模式识别与机器学习.英文
模式识别与机器学习.英文版 需要中文版的看下一个资源
模式分类(第二版).中文.2003
模式分类(第二版).中文.2003 李宏东译 机械工业出版社
矩阵分析.美国 Roger.A.Horn.扫描版
矩阵分析.美国 Roger.A.Horn.扫描版 基础的学习资料/
机器学习导论.2009.带书签
本书讨论了机器学习在统计学、模式识别、神经网络、人工智能、信号处理等不同领域的应用。其中涵盖的内容比较全面,且易于学习和掌握。主要内容包括:监督学习、贝叶斯决策理论、参数方法、多元方法、维度归约、非参数方法、决策树、线性判别式、多层感知器、隐马尔可夫模型、组合多学习器以及增强学习等。可作为高等院校计算机相关专业高年级本科生和研究生的教材,也可供研究机器学习方法的技术人员参考
机器学习.Mitchell.中文.带书签
机器学习.Mitchell.中文.带书签 想看英文原版的看上一个资源
机器学习.Mitchell.英文
机器学习.Mitchell.英文原版,这本书献给英文大牛,中文请看下一个资源
概率论与数理统计.带标签
概率论与数理统计.带标签-陈希孺著 这就是课本啊,可以学习基础了
大数据:互联网大规模数据挖掘与分布式处理.simple
大数据:互联网大规模数据挖掘与分布式处理.simple 该文档为简洁版
Web数据挖掘.2009.带标签
Web数据挖掘.2009.带标签 bing liu 俞勇著 清华大学出版社
数据科学实战手册(R+PYTHON)
数据科学实战手册:R+Python/(美)托尼·奥杰德(Tonyojeda)等著;郝智恒等译.一北京:人民邮电出版社,2016.8
数据科学实战.2015.中文.带标签
数据科学实战 / (美) 舒特 (Schutt,R.) , (美) 奥
尼尔 (O’Neil,C.) 著 ; 冯凌秉, 王群锋译. -- 北京 :
人民邮电出版社, 2015.3
数据科学家养成手册.2017.高扬著.带标签
数据科学家养成手册 高扬编著 北京电子工业出版社 2007
数据科学家修炼之道.2016.中文.带标签
数据科学家修炼之道
(美)弗格里斯(Voulgaris,Z.)著:
吴文磊,田原译.
北京:人民邮电出版社,
2016.4
社交网站的数据挖掘与分析.2012.中文.带标签
社交网站的数据挖据与分析
(美)罗塞尔(Russell,M.A.)著;
师蓉译
北京:机械工业出版社
机器学习-实用案例解析.2013.带书签
机器学习:实用案例解析
(美)康威(Conway,D.)等著;
陈开江,刘逸哲,孟晓楠译
一北京:机械工业出版社
利用Python进行数据分析.带书签
利用Python进行数据分析/(美)麦金尼(McKiney,w)著;唐学韬等译北京:机械工业出版社,20139
Python源码剖析-深度探索动态语言核心技术(2008)
Python源码剖析-深度探索动态语言核心技术(2008) 扫描版
Python学习手册.带书签
Python学习手册(第三版)/(美)鲁特兹(Lutz,M)著;侯靖等译.一北京:机械工业出版社
Python基础教程(第2版)
Python基础教程:第2版
(挪)赫特兰Hetland,ML.)著;
司维,曾军崴,谭颖华译.
北京:人民邮电出版社,2010.7
Python高级编程
Python高级编程
(法)莱德著;
姚军,夏海轮,王秀丽译.
北京:人民邮电出版社,2010.1
机器学习之路.2017.带目录_阿布(著).源码
第一篇 机器学习篇
第1 章 初识机器学习 2
1.1 机器学习——赋予机器“学习”的灵魂 2
1.1.1 小红帽识别毒蘑菇 2
1.1.2 三种机器学习问题 6
1.1.3 常用符号 6
1.1.4 回顾 7
1.2 KNN——相似的邻居请投票 7
1.2.1 模型原理 7
1.2.2 鸢尾花卉数据集(IRIS) 9
1.2.3 训练模型 9
1.2.4 评估模型 12
1.2.5 关于KNN 14
1.2.6 运用KNN 模型 15
1.2.7 回顾 16
1.3 逻辑分类I:线性分类模型 16
1.3.1 参数化的模型 16
1.3.2 逻辑分类:预测 18
1.3.3 逻辑分类:评估 22
1.3.4 逻辑分类:训练 23
1.3.5 回顾 24
1.4 逻辑分类II:线性分类模型 24
1.4.1 寻找模型的权重 24
1.4.2 去均值和归一化 31
1.4.3 实现 33
1.4.4 回顾 34
第2 章 机器学习进阶 35
2.1 特征工程 35
2.1.1 泰坦尼克号生存预测 35
2.1.2 两类特征 38
2.1.3 构造非线性特征 41
2.1.4 回顾 45
2.2 调试模型 46
2.2.1 模型调试的目标 46
2.2.2
调试模型 49
2.2.3 回顾 52
2.3 分类模型评估指标 53
2.3.1 混淆矩阵系指标 53
2.3.2 评估曲线 58
2.3.3 回顾 61
2.4 回归模型 61
2.4.1 回归与分类 61
2.4.2 线性回归 62
2.4.3 波士顿房价预测 66
2.4.4 泰坦尼克号生存预测:回归预测特征年龄Age 69
2.4.5 线性模型与非线性模型 72
2.4.6 回顾 73
2.5 决策树模型 73
2.5.1 信息与编码 74
2.5.2 决策树 76
2.5.3 对比线性模型和决策树模型的表现 77
2.5.4 回顾 79
2.6 模型融合 80
2.6.1 融合成群体(Ensamble) 80
2.6.2 Bagging:随机森林(Random Forest) 82
2.6.3 Boosting:GBDT 83
2.6.4 Stacking 86
2.6.5 泰坦尼克号生存预测:小结 93
2.6.6 回顾 94
第3 章 实战:股票量化 95
3.1 第一步:构造童话世界 95
3.1.1 股票是什么 95
3.1.2 当机器学习与量化交易走在一起 96
3.1.3 构造一个童话世界 96
3.1.4 回顾 100
3.2 第二步:应用机器学习 100
3.2.1 构建特征数据 100
3.2.2 回归预测股票价格 103
3.2.3 分类预测股票涨跌 108
3.2.4 通过决策树分类,绘制决策图 112
3.2.5 回顾 114
3.3 第三步:在真实世界应用机器学习 114
3.3.1 回测 115
3.3.2 基于特征的交易预测 119
3.3.3 破灭的童话——真实世界的机器学习 122
第二篇 深度学习篇
第4 章 深度学习:背景和工具 126
4.1 背景 126
4.1.1 人工智能——为机器赋予人的智能 126
4.1.2 图灵测试 126
4.1.3 强人工智能 vs 弱人工智能 127
4.1.4 机器学习和深度学习 128
4.1.5 过度的幻想 128
4.1.6 回顾 129
4.2 深度学习框架简介 129
4.2.1 评测方式 130
4.2.2 评测对象 131
4.2.3 深度学习框架评测 131
4.2.4 小结 135
4.3 深度学习框架快速上手 135
4.3.1 符号主义 135
4.3.2 MNIST 136
4.3.3 Keras 完成逻辑分类 138
4.3.4 回顾 141
4.4 Caffe 实现逻辑分类模型 141
4.4.1 Caffe 训练MNIST 概览 142
4.4.2 Caffe 简介 144
4.4.3 准备数据集 145
4.4.4 准备模型 146
4.4.5 模型训练流程 149
4.4.6 使用模型 149
4.4.7 Caffe 的Python 接口 150
4.4.8 回顾 151
第5 章 深层学习模型 152
5.1 解密生物智能 154
5.1.1 实验一:大脑的材料 154
5.1.2 实验二:探索脑皮层的功能区域 156
5.1.3 实验三:不同的皮层组织——区别在于函数算法 158
5.1.4 实验四:可替换的皮层模块——神经元组成的学习模型 161
5.1.5 模拟神经元 162
5.1.6 生物结构带来的启发 163
5.1.7 回顾 164
5.2 DNN 神经网络模型 164
5.2.1 线性内核和非线性激活 164
5.2.2 DNN、CNN、RNN 165
5.2.3 逻辑分类:一层神经网络 166
5.2.4 更多的神经元 167
5.2.5 增加Hidden Layer(隐层) 168
5.2.6 ReLu 激活函数 170
5.2.7 理解隐层 171
5.2.8 回顾 172
5.3 神经元的深层网络结构 172
5.3.1 问题:更宽 or 更深 172
5.3.2 链式法则:深层模型训练更快 173
5.3.3 生物:深层模型匹配生物的层级识别模式 175
5.3.4 深层网络结构 177
5.3.5 回顾 178
5.4 典型的DNN 深层网络模型:MLP 178
5.4.1 优化梯度下降 179
5.4.2 处理过拟合:Dropout 181
5.4.3 MLP 模型 182
5.4.4 回顾 185
5.5 Caffe 实现MLP 185
5.5.1 搭建MLP 185
5.5.2 训练模型 189
5.5.3 回顾 190
第6 章 学习空间特征 191
6.1 预处理空间数据 192
6.1.1 像素排列展开的特征向量带来的问题 192
6.1.2 过滤冗余 194
6.1.3 生成数据 195
6.1.4 回顾 198
6.2 描述图片的空间特征:特征图 199
6.2.1 图片的卷积运算. 199
6.2.2 卷积指令和特征图 201
6.2.3 回顾 206
6.3 CNN 模型I:卷积神经网络原理 206
6.3.1 卷积神经元 207
6.3.2 卷积层 208
6.3.3 多层卷积 211
6.3.4 回顾 216
6.4 CNN 模型II:图片识别 216
6.4.1 连接分类模型 216
6.4.2 猫狗分类 217
6.4.3 反思CNN 与DNN 的结合:融合训练 221
6.4.4 深度学习与生物视觉 222
6.4.5 回顾 224
6.5 CNN 的实现模型 224
6.5.1 ImageNet 简介 224
6.5.2 Googlenet 模型和Inception 结构 226
6.5.3 VGG 模型 228
6.5.4 其他模型 231
6.5.5 回顾 232
6.6 微训练模型(fine-tuning) 232
6.6.1 二次训练一个成熟的模型 232
6.6.2 微训练在ImageNet 训练好的模型 233
6.6.3 回顾 239
第7 章 Caffe 实例:狗狗品种辨别 240
7.1 准备图片数据 240
7.1.1 搜集狗狗图片 240
7.1.2 清洗数据 241
7.1.3 标准化数据 242
7.1.4 回顾 243
7.2 训练模型 243
7.2.1 生成样本集 244
7.2.2 生成训练、测试数据集 245
7.2.3 生成lmdb 246
7.2.4 生成去均值文件. 247
7.2.5 更改prototxt 文件 247
7.2.6 训练模型 249
7.2.7 回顾 249
7.3 使用生成的模型进行分类 249
7.3.1 更改deploy.prototxt 249
7.3.2 加载模型 250
7.3.3 回顾 257
第8 章 漫谈时间序列模型 258
8.1 Embedding 259
8.1.1 简单的文本识别. 260
8.1.2 深度学习从读懂词义开始 261
8.1.3 游戏:词义运算. 264
8.1.4 回顾 264
8.2 输出序列的模型 265
8.2.1 RNN 265
8.2.2 LSTM 266
8.2.3 并用人工特征和深度学习特征——一个NLP 模型的优化历程 268
8.2.4 反思:让模型拥有不同的能力 270
8.2.5 回顾 273
8.3 深度学习:原理篇总结 273
8.3.1 原理小结 273
8.3.2 使用建议 275
第9 章 用深度学习做个艺术画家——模仿实现PRISMA 277
9.1 机器学习初探艺术作画 278
9.1.1 艺术作画概念基础 278
9.1.2 直观感受一下机器艺术家 279
9.1.3 一个有意思的实验 280
9.1.4 机器艺术作画的愿景 281
9.1.5 回顾 282
9.2 实现秒级艺术作画 282
9.2.1 主要实现思路分解讲解 283
9.2.2 使用统计参数期望与标准差寻找mask 290
9.2.3 工程代码封装结构及使用示例 299
9.2.4 回顾和后记 302
附录A 机器学习环境部署 303
附录B 深度学习环境部署 307
附录C 随书代码运行环境部署 312
推荐系统实践.2012.带标签
推荐系统实践.2012.带标签 项亮编著 , 人民邮电出版社
统计学习基础-数据挖掘、推理与预测.2004
统计学习基础-数据挖掘、推理与预测.2004 电子工业出版社
数据挖掘原理与算法.2003
数据挖掘原理与算法.2003 邵峰晶 于忠清编著 是以算法为主的书
数据挖掘-实用机器学习工具和技术(第三版).2011.英文
数据挖掘-实用机器学习工具和技术(第三版).2011.英文。
数据挖掘-概念与技术(第三版).英文.带标签
数据挖掘-概念与技术(第三版).英文.带标签 该书为英文版
数据挖掘-概念与技术(第二版).中文.2007.带标签
数据挖掘-概念与技术(第二版).中文.2007.带标签 很经典的书
数据挖掘导论.2010.带书签
数据挖掘导论.2010.带书签 人民邮电出版社 这本书比较经典
数据挖据-实用机器学习工具和技术(第二版).2005.中文.带标签
数据挖据-实用机器学习工具和技术(第二版).2005.中文.带标签
数据挖据-实用机器学习工具和技术(第二版).2005.英文
数据挖据-实用机器学习工具和技术(第二版).2005.英文。
神经网络与机器学习(第3版).2011.带书签
神经网络与机器学习(第3版).2011.带书签 机械工业出版社
深入搜索引擎-海量信息的压缩、索引和查询.2009
深入搜索引擎-海量信息的压缩、索引和查询.2009 电子工业出版社
人工智能及其应用(第三版).2003.带书签
人工智能及其应用(第三版).2003.带书签 蔡自兴 徐光祐著
模式识别与机器学习.中文
模式识别与机器学习.中文版,需要英文版的看上一个资源
机器学习实战-源码
机器学习实战对应的程序源码,需要电子书的请看上一个资料
机器学习实战-带书签
机器学习实战-带书签 网上的资料都是没有带标签的,这个是带标签的